RURAL REPLACEMENT DWELLINGS

Consultation Draft

DRAFT Westmorland and Furness Design Code

LUC

Consultation Draft October 2025

Contents

	Contents	2
	Design Code for Rural Replacement Dwellings	4
1.	Context	5
	Introduction	5
	Character Areas	5
	Surroundings	5
	Site Analysis	5
	Historic Assessment	5
	The Four Steps to Context	6
	Step 1: Character Areas	6
	Step 2: Surroundings	9
	Step 3: Site Analysis	11
	Step 4: Historic Assessment	13
2.	Climate	18
	Introduction	18
	Using sustainable building materials	18
	Working With Water, Sustainable Drainage Systems (SuDS) & Flooding	22
	Surface Water Discharge Hierarchy	22
	Integration of Sustainable Drainage Systems	23
	Orientation of new buildings to maximise solar gain	25
	Energy Efficiency, Renewable Energy Generation and Low Carbon Technologies	25
	Climate: What we don't want to see	
	Nature	31
	Biodiversity	31
	Biodiversity Net Gain	32
	Biodiversity and BNG: what we don't want to see	33
	Trees, Hedgerows and Planting	33
	Existing Trees, Woodlands & Hedgerows	33
	Planting Design	34
	Trees, Hedgerows and Planting: what we don't want to see	36
4.	Movement	37
	Lighting & Safety	37

Design Code for Rural Replacement Dwellings

This section of the Design Code provides detailed code for rural replacement dwelling projects. It focuses on proposals to demolish and replace, or to substantially renovate and extend, an existing house in the countryside or in a rural village or hamlet.

The design code supports legacy local plan policies and national planning policy.

The design code supports the implementation of design policies in the three legacy Local Plans, in particular Barrow DS5, Eden DEV5 and South Lakeland CS1.1 & DM2. It also supports all other policies that relate to design in the legacy local plans, made neighbourhood plans (NP/NDP), and other development plan documents including:

- *Allithwaite and Cartmel NDP AC1
- *Grange-over-Sands NP10
- Haversham & Hincaster NP HH1
- **Lazonby NP D2 & D3
- Penrith NP 1
- Upper Eden NDP2 & 4
- Arnside & Silverdale DPD AS08

Code is indicated by highlight boxes.

The text outside of the highlight boxes is supporting guidance.

After each code are the policy reference numbers of the relevant legacy local plan policies that the code supports. For policies in plain text, the code is a requirement. For policies in *italics* the code is guidance.

This design code also supports the policies, guidance and codes of made Neighbourhood Plans. The policy links between the code and Neighbourhood Plans are set out in the supporting document 'Neighbourhood Plan Policy Review'.

For other development types return to the home page.

^{*}Has a supporting Design Code or ** Design Guide.

1. Context

Introduction

- **1.1** The 'What makes Westmorland and Furness' section of this design code and the district's 'Key Aspects of Place' show how the district is a rich mosaic of different landscapes, localities, places, and settlements.
- **1.2** The design of new homes must respond positively to the character of the district and locality if it is to be valued now and in the future. The starting point with any proposal for new homes is to fully consider the four steps to understanding context: character areas, surroundings, the site itself, and the historic environment.

Character Areas

 These are areas of common landscape or historic features. These are already identified, assessed and described for us in existing sources of information.
 The Cumbria Landscape Character Guidance and Toolkit provides further information.

Surroundings

• This is the local area surrounding a site comprising the spaces, buildings, landscape, townscape, views and features that are specific to the surroundings of the application site. The extent of the surroundings depends on how large the site is and where it sits in the landscape or townscape. This will vary on a case-by-case basis, depending on how far-reaching the potential interactions between the proposals and the nearby landscape may be. The applicant must build up their own understanding of the surroundings with the help of this design code.

Site Analysis

• The character of the site itself also must be analysed. For example, the site analysis might identify steep slopes or limited access points as constraints, whereas views out, existing buildings and materials to re-use, mature specimen trees, good existing boundary features and existing or potential pedestrian links may be identified as opportunities. The applicant must build up their own understanding of the site with the help of this design code.

Historic Assessment

- The historic environment encompasses everything from below ground remains, earthworks, field and settlement patterns, routes to buildings and structures. A heritage assessment considers all aspects of the historic environment whether they are designated or not.
- **1.3** Context is not a fixed distance from the site nor is context made up of an identical set of factors that apply everywhere. Topography and landform, water

movement, views, sounds, activities, and communities are all important to context, but there may be other factors that are specific to the site and its surroundings. These factors can be both tangible and intangible, old or new, permanent or temporary. The checklist with this design code captures a range of factors that make up the context of sites in the district.

The Four Steps to Context

Step 1: Character Areas

CODE RRD 1.1 Character: Proposals must demonstrate how the design has been directly informed by the established characteristics and qualities of the site's setting, as identified in the National Character Areas and Cumbria Landscape Character Areas.

(Barrow: N1, DS2; Eden: DEV5, ENV2; South Lakeland: DM1, AS02, CS8.2, DM2)

- **1.4** Design and Access Statements must refer to any relevant Cumbria Landscape Character Areas, Types and Sub-Types in which the proposal site is experienced.
- **1.5** Each 'Character Area' has common recognisable characteristics and landscape features. They do not follow administrative boundaries, but rather are determined by the natural lines and transitions within the landscape. Key elements include landform (e.g. hills, valleys, slopes), land cover (e.g. woodland, farmland, lakes) and settlement (e.g. towns, villages, farmhouses). Cultural perceptions (e.g. history, experiential qualities such as tranquillity) are also included in the profiles.
- **1.6** The <u>Cumbria Landscape Character Guidance and Toolkit</u> identifies Landscape Character Types and several sub-types at a finer grain of detail. Descriptions for each sub-type provide detailed information on the unique features of each landscape area. This will provide useful contextual information on landscape setting to reference in your application.
- 1.7 If the site is within one of the National Landscapes or its setting, the applicant should review the Arnside and Silverdale Management Plan or the North Pennines Management Plan. Similarly if the site is in the setting of one or both of the National Parks, applicant should review the Lake District Management Plan and/or the Yorkshire Dales Management Plan. If the site is close to the district's border with the Lake District National Park, it may be in one of the sub-areas of the Lake District Landscape Character Assessment. Applicants must demonstrate an understanding of the unifying characteristics which define the wider setting of the development, and how these vary within Westmorland and Furness, to preserve and enhance these through their proposals.
- **1.8** Both the National and Cumbria Landscape Character resources save applicants and planning officers time by providing an independent and comprehensive assessment of landscape character at wider and narrower scales.

1.9 This design code includes a checklist to help you identify and understand the National Character Areas and Cumbria Landscape Character Types. Further information is also available in the Summary Character Appraisal and Baseline.

The upland character area of the North Pennines National landscape in the foreground, and the Eden Valley in the distance.

The fairly flat and open floor of the Eden Valley with the hills of the Lake District on the horizon. Aiketgate.

The Pennine upland character around Church Brough.

The low-lying flats around Morecambe Bay.

Step 2: Surroundings

CODE RRD 1.2 Surroundings: Rural replacement dwellings must respond to the character of the surrounding area and wider setting, to reflect local distinctiveness by complementing and enhancing the existing built and natural environment. This must be clearly demonstrated, for example with a Design and Access Statement showing an understanding of the existing landscape.

(Barrow: DS5, *DS6, GI1*; Eden: DEV5, ENV2, ENV3, LS1; South Lakeland: AS01, AS02, CS1.1, DM1, *CS8.10, DM2*)

- **1.10** To fully understand the surroundings of a proposal site, a context study should be conducted. Analysis should provide a comprehensive understanding of the landscape or townscape and should inform how the proposed development can integrate into its context (this is wider than a Landscape Visual Impact Assessment).
- **1.11** The level of detail of contextual analysis should correspond to the scale and impact of the proposed development. Applicants must include an appraisal of the local context, addressing landscape setting, local tranquillity, views, and vistas. This assessment should guide the integration of the development with the landscape, focusing on careful siting, design, and impact mitigation.
- **1.12** Including a contextual analysis and site study in the Design and Access Statement is recommended to demonstrate how proposals consider the broader landscape. Pay particular attention to how the development will maintain or enhance its surroundings, ensuring a harmonious transition at the boundaries. This transition should reflect local character and materials, enhance the sense of place and respond positively to site opportunities.
- 1.13 This design code includes a checklist to help you assess the site's surroundings. Further information is also available in the Summary Character Appraisal and Baseline.

The buildings along the village street at Newbiggin look haphazard from this viewpoint, but there is consistency in the building heights, gabled forms, set back distance from the street and use of stone and drystone walls.

Different building types with different heights and opening layout stand side by side in linear groups in Great Salkeld.

There is a rhythm of buildings of similar heights and scales joining the pavement edge with garden spaces in between. Meanwhile, the opposite side of the street has a consistent line hedges and verges with some stone walls that conceal the houses and front gardens. High Hesket.

In rural locations the 'surroundings' can be the wider landscape. In cases like this, how buildings, parked vehicles, structure, planting and boundary features sit in the landscape is a key design consideration. Motherby.

Step 3: Site Analysis

CODE RRD 1.3 Site Analysis: All proposals must include a site analysis to evaluate the constraints and opportunities of the specific site. This assessment must consider how the site's characteristics influence the proposed development, ensuring sensitivity to local context.

(Barrow: DS5, H7, N1; Eden: DEV5, ENV1, ENV2, ENV3, ENV10, RUR3; South Lakeland: AS02, AS08, CS1.1, DM1, DM3, CS8.6, CS8.10, DM2)

- **1.14** This study should analyse the site's aspect and microclimate to inform optimal siting and orientation, evaluate available access points and routes, including rights of way, to enhance connectivity, and work with the site's topography, water movement, and ground conditions for effective drainage and land use.
- **1.15** The study must assess and respond to the existing hydrological characteristics of a site to ensure a flood resilient design is achieved and water / flooding is not deflected or constricted. The hydrological assessment of the site must consider site topography, naturally occurring flow paths, ephemeral watercourses and any low-lying areas where water naturally accumulates. Resultant layouts must take account of such circumstances.
- **1.16** The study should assess existing structures and services to promote cohesive integration, understand the impacts of air quality, lighting levels, and noise to mitigate disturbances and the uses of adjoining land and sites for future occupants, and retain, protect and enhance key landscape and ecological features such as trees, woodlands, and boundary treatments.
- **1.17** The early consideration of drainage which is integrated with site design is essential. Drainage is a key determinant of site design and should be factored into

the initial assessment and design to ensure that the most sustainable approaches are adopted and the highest priority in the surface water hierarchy is achieved. Failure to adequately consider drainage can result in substantial changes to layout and proposed dwelling numbers being required to provide suitable drainage.

- **1.18** Safeguarding and enhancing ecological assets and habitats is vital to ensure biodiversity is integrated into the design. This includes retaining mature trees, hedges and waterways and features, with a focus on integrating them into the public realm of the new development.
- **1.19** Existing utility infrastructure can be a key determinant of site design. It is important for water and wastewater assets to be fully considered in development proposals at an early stage. United Utilities or Northumbrian Water will not permit development over or in close proximity to water and wastewater assets. Changes in ground level in the vicinity of water and wastewater assets or changes to the public sewer, including diversion, may not be acceptable as such proposals can:
 - · affect the structural integrity of an asset;
 - · adversely affect the hydraulic performance of an asset; and
 - increase / displace flood risk.
- **1.20** Water and wastewater assets will need to be afforded access for maintenance, repair and replacement and be fully considered in the design and masterplanning process for a site. This should include careful consideration of landscaping proposals in the vicinity of assets, any changes in levels, any access / roads and any services that are proposed within the easement area, including services that are proposed to cross the assets.
- **1.21** Groundwater Source Protection Zones exist around Barrow and Penrith to protect groundwater from pollution. Groundwater source protection zones can be a key determinant of site design. Applicants should refer to the Environment Agency's Approach to Groundwater Protection guidance. Where the groundwater source protection zone relates to an asset owned by United Utilities or Northumbrian Water, applicants / site designers will need to engage with United Utilities or Northumbrian Water at the earliest opportunity.
- **1.22** This structured approach will facilitate a design that is not only visually appealing but also sustainable and contextually relevant.
- 1.23 This design code includes a checklist to help you assess the site. Further information is also available in the Summary Character Appraisal and Baseline.

CODE RRD 1.4 Setting: Applicants must identify whether their proposal falls within or affects the setting of any landscape, ecological, cultural, and historic sites or designations.

(Barrow: DS5, H5, N1; Eden: ENV1, ENV3, ENV10; South Lakeland: AS01, DM1, CS8.6)

- **1.24** Designations are specific areas recognised for their importance due to environmental, cultural, or historical significance. Statutory designations are recognised and protected by law, such as the Lake District World Heritage Site, Listed Buildings, Conservation Areas and Sites of Special Scientific Interest (SSSIs). Non-statutory designations are also important for local planning, such as locally listed buildings or areas identified for their ecological value such as Local Nature Reserves.
- **1.25** Where development falls within or is adjacent to the setting of a National Park (the <u>Lake District</u> or <u>Yorkshire Dales</u>) or National Landscape (<u>Arnside & Silverdale</u> or the <u>North Pennines</u>), the relevant Management Plan gives a greater depth of information about the unique character of that area. This should be used to understand the Special Landscape Qualities that have led to the designation, and how these can be protected and retained.
- **1.26** Details of sites and designations can be seen on our website's interactive policies map. Applicants can also access interactive mapping through Defra's Magic website or the Planning.gov website.
- **1.27** Understanding the purpose of these designations is crucial for ensuring that proposed developments align with relevant national and local policies. This not only helps to protect the integrity of these sites but also supports sustainable development practices. Applicants are encouraged to familiarise themselves with the implications of these designations, and to refer to the Nature Section of this Design Code for further guidance on compliance and best practices.

Step 4: Historic Assessment

CODE RRD 1.5 Historic Assessment: Rural replacement dwelling applications must demonstrate how the proposal responds to the existing historic landscape and cultural context, incorporating a detailed assessment of the heritage and design elements.

The applicant must demonstrate how the proposal makes a positive response to the existing historic landscape and townscape context.

Rural replacement dwelling applications must consider potential impacts on heritage assets (both designated and non-designated) and avoid harm to the significance of heritage assets.

(Barrow: DS5, HE4, H5, H7, N1, *DS2*; Eden: ENV3, ENV10; South Lakeland: AS08, CS1.1, DM1, DM3, *AS07, CS8.2, CS8.6, DM2*)

1.28 In many rural replacement dwelling cases, the existing house itself, and the site it forms part of, including outbuildings, surfaces and boundaries, may be of heritage value. It may also have group value or important associations with neighbouring or nearby buildings.

- **1.29** A Heritage Statement must be produced where required to ensure comprehensive evaluation of the proposal's impact on heritage assets and the surrounding historic and natural environment. The degree of detail and complexity of this will be proportionate to the nature of the development, the heritage asset(s) it affects and the nature of how it affects them.
- **1.30** This will include not only consideration of visual impacts but also any effects of contextual relationships, such as between the house and its garden or landscaping; between the house and street, lane or settlement; as well as the wider landscape context including trees and boundaries.
- **1.31** The Heritage Statement must clearly demonstrate an understanding of the significance and setting of any heritage assets affected by the proposal. Potential impacts (both direct and indirect) on that significance must then be reviewed and levels of potential harm evaluated. <u>Historic England Advice Note 12: Statements of Heritage Significance</u> sets out what to include in a Heritage Statement.
- **1.32** It may be that the heritage value of the existing house or its site means the principle of replacement with a new building is not acceptable. This will be the case with listed buildings, key buildings in conservation areas, locally listed buildings and non-designated heritage assets.
- **1.33** The degree of detail and complexity of this assessment will depend on the size of the development and the nature of the heritage asset. For example, some heritage assets have an important relationship with their setting or other nearby assets or features of the townscape or landscape.
- **1.34** The Heritage Statement should support the design approach used in the application, and enable an informed planning decision to be made. It should not be simply a list of sites and features.

1.35 The assessment must include:

- Designated heritage assets: World Heritage Sites, Scheduled Monuments, Listed Buildings, Conservation Areas, Registered Parks and Gardens, etc. (details can be found on the National Heritage List for England, the Local Plan interactive map and the World Heritage Site website).
- Any relevant conservation area appraisals and management plans.
- Non-designated heritage assets properties on the local list, archaeological sites, boundaries, historic street furniture, milestones, etc. (details can be found on the Historic Environment Record (HER)).
- The potential for any heritage assets not yet recorded, including below ground archaeology.
- Discussion on how the development will affect the setting of a heritage asset must be included. This goes beyond a consideration of purely visual impacts to look at how change effects the way an asset is understood and experienced e.g., impact of increased traffic on the peace and quiet of a churchyard, or the

design of a farm conversion on the agricultural identity of a farmstead or hamlet.

- **1.36** The <u>Cumbria Historic Landscape Characterisation Database</u> has identified 53 character areas and provides details of historical background, historic settlement type and vernacular buildings. Developments should respond to the details corresponding to the Historic Landscape Character Assessment for their location.
- **1.37** If the site is in an area covered by a Neighbourhood Plan or Conservation Area Management Plan, the proposed development should respond to any relevant design considerations provided in these documents. See <u>Understanding Place:</u> <u>Historic Area Assessments (2017)</u> for further guidance.
- 1.38 This design code includes a checklist to help you prepare a heritage statement. Further information is also available in the Summary Character Appraisal and Baseline.

The village green and the routes leading from it have formed a framework for the settlement pattern here at Langwathby. The individual buildings, village green and settlement pattern are each of heritage value.

The settlement name 'Millhouse' gives a good indication of this village's historical activity, but was it also an important bridging point over the River Caldew that connected many local places? We can also see a strong 'Lake District' character to the buildings.

A mixture of historic buildings and a historic route at Ainstable. Is the dispersed settlement patten of heritage value? How important is the landscape as the setting to the village and the place of worship on the horizon?

Heritage value can extend beyond the boundary of the site and into its surroundings. Features like the walls, verges, trees and outbuildings along this lane on the edge of Motherby all contribute to its traditional character and visual harmony.

2. Climate

Introduction

- **2.1** Good design conserves natural resources including land, water, energy and materials. This requirement is growing in importance in the face of a climate and ecological emergency.
- 2.2 New development must respond with designs that consider both the need to reduce carbon emissions (mitigation) and be resilient to the changing climate (adaptation) whilst remaining efficient in their use of natural resources.
- 2.3 Sustainable design sits across many other themes of good design and those in this design code. It is not a separate entity. It uses land efficiently and so supports adaptation by supporting the potential for local carbon sequestration and nature recovery, minimising flood risk and the potential impact of flooding, and reducing overheating and air pollution.

Using sustainable building materials

CODE RRD 2.1 Sustainable Materials: Rural replacement dwellings must consider the use of sustainable construction materials and methods.

In order to minimise the embodied carbon profile of new development, applicants are to prioritise:

- a) the repair, re-purpose and re-use of existing buildings, structures, boundary features and infrastructure (such as roadways, drainage, earthworks) to capture their embodied carbon;
- b) the re-use of materials;
- c) new materials being sustainable and locally-sourced; and
- d) building structures which are adaptable and resilient to future climate changes.
- e) The whole life costs of obtaining, maintaining, replacing and disposing of materials must be considered. Use locally sourced and non-toxic building materials that have low-embodied carbon and can be disassembled for reuse, or alternatively re-purposed or recycled.
- f) future adaptation, alteration or disassembly considering how current and future occupiers' needs may change, for example due to old age, disability or a growing family.
- g) on-site renewable energy generation that can easily be altered or upgraded.
- h) the need for external hard and soft landscaping, roofing, and rainwater goods to be resilient for more extreme weather events (rainfall, winds) and a warmer climate with more hot and dry spells.

(Barrow: C5, DS5, H7, *HC1*; Eden: DEV5, RUR3; South Lakeland: CS1.1, CS8.7, *CS8.6*)

- **2.4** The starting point with a rural replacement dwelling application is the existing house itself and anything else manmade on the site. To make best use of the embodied carbon, its structure and materials should be re-used as far as possible to minimise the carbon footprint of the proposal.
- 2.5 Therefore, while common building materials like concrete, artificial tiles, artificial stone, uPVC and aluminium all typically contain high embodied carbon (as well as involving high energy use in production, water intensive manufacture, or containing toxic chemicals), the way in which materials are procured or used may also increase their embodied carbon profile. Materials that are shipped long distances to their destination will have high embodied carbon. Procuring local materials is therefore encouraged.
- 2.6 Materials that are likely to be replaced soon given their short lifespans and those that do not allow for lifespan-enhancing maintenance or repair may also be considered to have high embodied carbon (given the need to secure more of the material than would otherwise be needed were it more durable). For instance, the increasing use of prefabricated material, uPVC windows, gutters and fascias, whilst requiring less maintenance, requires more frequent replacement and therefore higher material and carbon consumption during the lifespan of homes. However, aluminium, despite traditionally causing significant carbon emissions during manufacturing, can have a lower whole life carbon impact when carefully procured from manufacturers utilising low carbon, renewable energy and recycled material; and where optimum use of its durability is made by employing efficient and sensitive design.
- **2.7** Therefore, to minimise carbon generated through construction and development, new development should:
 - Re-use, adapt and upgrade existing building materials, especially materials that contribute to local distinctiveness such as locally quarried stone and slate.
 - Use locally sourced and/or low carbon building materials:
 - Sustainably sourced timber
 - Locally quarried building stone and aggregate
 - Locally quarried slate
 - Natural lime for mortars, renders and limewashes
 - Minimise the use of building materials that require large amounts of energy and resources to produce and/or cannot be readily recycled:
 - Concrete and cement, including in render and other finishes.
 - uPVC, aluminium and steel-framed glazing, windows and doors (aluminium is preferred to uPVC for its durability).
 - Avoid synthetic materials such as artificial / plastic roof tiles or cladding.
 - Avoid the use of prefabricated building materials that can generally not be repaired and have a fixed lifespan, requiring more material to be brought in for replacement.

- Prioritise building methods and materials that can be disassembled and reused. Building methods should also minimise land disruption and preserve the
 natural landscape. Development that involves extensive levelling, moving or
 re-grading of land is inherently more carbon intensive during construction, and
 often creates landforms that are not reflective of the character of the wider
 landscape and landforms. Examples include the creation of large plateaus of
 land with steep embankments or tall and/or highly engineered retaining walls.
- Design to minimise energy intensive maintenance requirements over the lifetime of the development.
- Design buildings to be adaptable to different uses without requiring demolition.
- Design short-life systems and materials –for example mechanical and electrical installations – to be replaceable without requiring substantial alterations to long-life building elements, such as structure and external envelope.
- Design buildings with fixtures that promote water efficiency. As well as saving water, it helps to reduce the overall carbon footprint of our water supply infrastructure and system.

Although derelict, the walls of this barn at Stainton near Penrith are embodied carbon that may be capable of repair, and re-use or as a last resort, a source of recycled materials.



The retention of stone walls and re-use of the walling stone are a good re-use of embodied carbon on the site, as well as knitting the development into the character of Greystoke.

The exterior of this new house is entirely made of materials that are energy intensive (artificial stone sills and lintels and synthetic / cement render) or have short lifespans and will go to landfill (uPVC rainwater goods, fascias and windows). Penrith.

Natural slate and timber have lower embodied energy and can be re-used or recycled. Greystoke.

Working With Water, Sustainable Drainage Systems (SuDS) & Flooding

2.8 The character of Westmorland and Furness has been influenced by its relationship with water, either coastal or inland, upland or lowland. Today flood risk and the impacts of climate change are significant issues in the district, with flood prevention infrastructure added or in progress along many of the district's main rivers and their tributaries. All development will have an impact on water cycles and movement, in some form. Good design will work with water, by enhancing the value of water bodies as a blue infrastructure asset and will integrate water as a feature of the development proposals.

CODE RRD 2.2 Flood Risk: All development must contribute towards a reduction in flood risk and the potential impacts of flooding by:

- a) incorporating flood resilience measures;
- b) addressing all flood risks, including but not limited to coastal and groundwater flooding; and
- c) addressing the potential impacts of flooding and integrate SuDS, permeable surfaces, and other water management solutions to mitigate these risks.

(Barrow: BP5, C1, C3a, H7; Eden: DEV2; South Lakeland: CS1.1, CS8.8, DM1, DM6, CS8.5; National Standard for Sustainable Drainage Systems)

Surface Water Discharge Hierarchy

- **2.9** SuDS must then allow surface water to be discharged according to the following hierarchy:
 - Priority 1: Collection for non-potable use.
 - Priority 2: Infiltration of direct runoff into the ground where feasible.

- Priority 3: Discharge to a surface water body (e.g., basin or watercourse).
- Priority 4: Discharge to a public surface water sewer or equivalent system.
- Priority 5: As a last resort, discharge to a public combined sewer, with clear justification provided.
- **2.10** Some areas may be at a higher risk of flooding than others, due to their geography, and this will also need to be factored into design proposals.

CODE RRD 2.3 Sustainable Drainage: All development must integrate Sustainable Drainage Systems of an appropriate form and scale that:

- a) manages runoff and actively contributes to local biodiversity. This includes the incorporation of complex, multi-tiered habitats such as wetland mosaics, bio-retention areas, and other natural features that provide habitat diversity and support ecological networks;
- b) integrates with the context of the surrounding landscape and townscape; and
- c) does not cause any adverse impacts on the quality of the receiving water body.

(Barrow: C1, C3a, DS5, DS6, H7, *DS2*; Eden: DEV2; South Lakeland: CS1.1, CS8.8, DM1, *DM6*, National Standard for Sustainable Drainage Systems)

- **2.11** The government's <u>SuDS manual</u> and the <u>National standards for sustainable</u> <u>drainage systems (SuDS)</u> are key references for the specification of any SuDS system.
- 2.12 Development proposals must clearly outline how Sustainable Drainage Systems (SuDS), and flood resilience measures are integrated. SuDS must be considered holistically and integrated with the provision and design of the development's green infrastructure and biodiversity net gain, as the three are frequently interlinked and therefore require an integrated approach. Detailed plans should show how these measures mitigate flooding risks, incorporating SuDS, permeable surfaces, and other water management solutions. Submissions must include schematics of water flow, stormwater management, and exceedance routes, and comply with local planning and environmental regulations. Additionally, effective maintenance and management strategies must be established. For larger sites, drainage proposals should fit within a broader, coordinated strategy that aligns with future development phases.
- **2.13** Consideration should be given to the climate change resilience of SuDS to ensure that the SuDS continues to effectively serve its purposes despite climate change impacts. Similarly, clear and enforceable maintenance and management arrangements should be put in place to ensure SuDS function as intended into the long-term.

Integration of Sustainable Drainage Systems

2.14 SuDS are designed to manage surface water runoff as close as possible to where it falls, by using a combination of nature-based and engineered solutions.

- **2.15** SuDS are a system that is built up of smaller or larger components that are designed into development to contribute to the overall goal of managing runoff and reducing flood risk. There is therefore not a one size fits all approach. Instead, there is a large range of options that can be used in different combinations depending on the development, the site and its context. Examples of SuDS components include:
 - non-potable re-use;
 - rainwater harvesting;
 - green roofs;
 - · permeable surfacing;
 - infiltration;
 - swales;
 - channels and rills;
 - filter drains;
 - filter strips;
 - bio retention areas;
 - rain gardens;
 - inlets and outlets;
 - detention basins;
 - infiltration basins;
 - ponds; and wetlands.
- **2.16** The design of SuDS will vary according to site specific topography, ground conditions and development proposals. However, the following principles apply to all SuDS design. Three key principles for SuDS and flood prevention in all sites are:
 - grading land leading to doorways so that stormwater and runoff flow away from the doorway.
 - · allowing safe overland routes for stormwater and runoff to flow, and
 - ensuring new sewage and wastewater systems drain downward rather than upward to mains sewers to prevent potential sewer surcharge.
- **2.17** SuDS should manage overall water runoff speed and volume through the following:
 - Prevention: reducing the amount of surface water runoff by minimising impermeable surfaces and increasing interception and infiltration
 - Source Control: managing water as close as possible to where it falls, rather than diverting it

- Site Control: Managing water at a site or local level, such as through detention basins or swales & rain gardens
- Regional Control: Apply broader measures, such as wetlands, to manage runoff at a regional scale.

Orientation of new buildings to maximise solar gain

CODE RRD 2.4 Passive Solar Gain: All proposals must be designed such that building form and layout are optimised to maximise daylight and passive solar gains for internal spaces.

This should be part of a 'whole house' approach to energy efficiency that considers levels of insulation, the orientation of rooms and openings, airtightness, natural ventilation and achieving comfortable conditions in periods of warmer and drier weather.

(Barrow: C5, DS5, H7; Eden: DEV5; South Lakeland: CS1.1, CS8.7, DM2)

This new house in Great Salkeld has its principal rooms facing south to maximise solar gain. Overheating is managed by the recessing of the glazing and internal blinds.

Energy Efficiency, Renewable Energy Generation and Low Carbon Technologies

CODE RRD 2.5 Energy Efficiency: Proposals should clearly show how the design of building(s) maximises the efficient use of materials, and the layout and orientation supports energy efficiency.

(Barrow: C5, DS5; Eden: DEV5; South Lakeland: CS1.1, CS8.7)

- **2.18** All development must incorporate renewable energy measures that are sensitive to the local area and character. Renewable energy generation installed must be able to be altered or upgraded rather than simply replaced at the end of its lifespan. Renewable energy generation options include:
 - Solar panels for both electricity generation (photovoltaic or PV) and water heating (solar thermal)
 - Air source heat pumps
 - Ground source heat pumps
 - Micro-hydro power (where possible)
 - Biomass

Solar

- Solar photovoltaics (PV) produce electricity from the light of the sun. Solar PV should be used across Westmorland and Furness, but care must be taken to select solar PV with the least visual impact.
- Solar thermal panels collect heat from the sun to heat hot water. They work best alongside existing water heating systems which can help top up the heating system in winter months when solar energy is less abundant. Solar thermal should be used across Westmorland and Furness, but care must be taken to select solar thermal with the least visual impact.
- To minimise the impact of a solar system on the character of settlements and buildings the factors below should be considered:
 - Location and Visibility solar panels can affect the character and appearance of new rural dwellings. Less prominent roof slopes should be identified for solar panels, such as garden-facing roof slopes or secondary roofs and garage/outbuilding roofs. Freestanding arrays should be considered where there is space available and a sensitive roofscape.
 - Colour matching or aligning the colour and finish of roof tiles and solar panels should be aimed for so that panels are blended with the roof they are mounted on and any surrounding buildings.
 - Framing similarly, the design and colour of panel frames has an impact on their appearance. Where possible, panels without frames, black framed panels, or frames matching the colour of the panels or roof should be specified, to reduce the visual impact of the frames.
 - Symmetry panels should be laid in a symmetrical pattern. Aerials and flues (and therefore related internal piping) should be located so as to not obstruct a symmetrical solar installation.

- Size The more panels installed, the better the investment in solar installation is for residents. However, at least a strip of roof should be visible on all sides of the panel array. If the roof is not symmetrical, don't visually overload the roof if you can't achieve a clean rectangle/square edge for the array, install fewer panels.
- In-roof or on roof where possible in-roof panels should be installed, particularly in new build in conservation areas and other sensitive locations. Where on-roof panels are used, the distance between the panel mounting system and the roof should be minimised. Where solar thermal panels, which are thicker and harder to visually merge with the roof, are used, close-coupled systems must be avoided, particularly in sensitive areas.
- Visibility the location of a solar system can impact on the roofscape of settlements. Less prominent roof slopes should be identified for solar panels, such as garden-facing roof slopes or secondary roofs and garage/outbuilding roofs. Freestanding arrays should be considered where there is space available and a sensitive roofscape. In conservation areas, panels should not be installed on the main elevation of a building. The main elevation is the face or faces of a building seen from the direction from which it is most commonly viewed. Where it is installed on the main elevation, layouts should consider their visual appearance.
- Embedded panels new development should deliver in-roof panels wherever possible.

These solar water heaters sit neatly and unobtrusively on these roofs in Kirkby Lonsdale.

These solar panels blend well with the natural slate of the roofs. The slates form thick borders around the panels, which are placed centrally on the roof slopes. Kirkby Lonsdale.

PV panels have been built into the roof slopes in the foreground when these houses were built, meaning the surfaces of the panels are almost flush with the roof tiles. In the background PV panels have been retrofitted to existing slate roofs. Lazonby.

This housing development in Stainton near Penrith makes extensive use of solar panels on the southerly facing roof pitches. The panels are set into the roof slopes.

Heat Pumps

- **2.19** All new build homes should include ground or air source heat pumps. Heat pumps are well suited to new build developments and can also be suitable in traditional buildings.
- **2.20** Ground source heat pumps use pipes that are buried underground to extract heat from the ground.
- **2.21** Air source heat pumps transfer heat from the outside into a building to provide electric heating to generate hot water and heating. An air source heat pump (ASHP) unit will need to be fitted to a wall or flat roof or placed on the ground, with plenty of airflow around it. ASHPs should be positioned to not be visible from the front of the house, and should otherwise avoid prominent positions, away from neighbouring properties.
- **2.22** Solar panels with storage batteries can power the ASHP instead of power from the National Grid. These two forms of renewable energy are often installed together, as the panels can power the home and heat pump.

Biomass

- **2.23** Biomass is mainly the use of logs, wood chips, wood waste or pellets to create electricity and heat. Biomass should be considered as a source of renewable energy generation when designing new development. Small-scale domestic uses are likely to constitute permitted development, although permission may be required for larger schemes in community or commercial buildings.
- **2.24** Biomass fuel must be obtained from a sustainable and, ideally, local source. Energy generation via biomass procured from an unsustainable source can have very high carbon emissions and must be avoided.

Climate: What we don't want to see

- New development with a large carbon footprint due to the materials, components and building techniques it uses, and missed opportunities to reuse buildings, structures, infrastructure or materials where feasible.
- Proposals that add to the carbon footprint of development by extensively levelling out and regrading slopes.
- Building components such as windows, doors, soffits, renders and rainwater goods that have short lifespans and create a short cycle or renewal and replacement.
- Homes that have a high carbon footprint to occupy due to a lack of built-in efficiencies such as passive solar gain and natural ventilation or require additional heating or cooling
- New development that takes no measures to manage runoff and reduce flood risk
- A tokenistic approach to SuDS (e.g. a large pond) rather than development incorporating a range of SuDS measures as part of a holistic system
- SuDS measures that offer neither habitat value nor amenity value or perform poorly as either.
- Renewable energy generation serving energy inefficient buildings
- Renewable energy generation that is not responsive to place or its character.

3. Nature

Biodiversity

Conservation and enhancement of priority habitats and species

CODE RRD 3.1 Biodiversity Protection: All proposals must identify and consider priority habitats and species within the site and its immediate surroundings. Where priority habitats and species are identified:

- a) the proposal must include measures to conserve these habitats and species, such as minimising habitat disruption, incorporating buffer zones, and preserving key ecological features; and
- b) the proposal must enhance these habitats, for example, by restoring degraded areas, expanding existing habitats, or creating new habitat features that contribute to the ecological network.

(Barrow: BP13, DS5, H5, N3, N4, *BP4, DS2;* Eden: DEV5, ENV1; South Lakeland: AS04, CS1.1, DM1, *CS8.1, CS8.4, DM2, DM4*)

- **3.1** The <u>Cumbria Local Nature Recovery Strategy (LNRS)</u> will map out and list priority habitats and species that need protection and enhancement within the county. This includes habitats and species that are of national importance, as well as those that are locally significant.
- **3.2** Reference the use of the Cumbria Habitat Basemap and Habitat Networks Map as tools to identify and prioritise these habitats.
- **3.3** The Cumbria LNRS will update the species lists, determine priority species, link these species to habitat management outcomes, and create tailored management plans for particular species needs.
- **3.4** Developers should use the <u>Cumbria Biodiversity Data Centre</u> for up-to-date information.
- **3.5** Opportunities should be taken to incorporate biodiversity into the fabric of new buildings and structures for example through:
 - Swift and swallow bricks, which are mortared directly into brick walls.
 - Bat access tiles for roofs, bat bricks and bat cavities for walls.
 - Living roofs and/or walls. These promote biodiversity, minimise water run-off, improve building insulation, reduce cooling costs in summer and can improve the appearance of an area. Such schemes are unlikely to be appropriate for traditional or Listed Buildings.
- 3.6 These built-in measures will have longer useful lifespans than measures such as boxes fixed to walls or trees. Care should also be taken with the placement of biodiversity measures in terms of orientation, height from the ground and proximity to human activity.

Biodiversity Net Gain

CODE RRD 3.2 Biodiversity Net Gain: All new developments must achieve a minimum of 10% Biodiversity Net Gain (BNG). This must be calculated using the statutory metric and demonstrated through detailed ecological assessments submitted with the planning application, as per BNG regulations.

BNG must not only focus on the quantity of habitat created or enhanced but also on the quality and ecological value.

To achieve BNG, development must:

- a) Include a range of habitats that are appropriate to the local context, ensuring that they reflect the natural character and biodiversity priorities of the area.
- b) Design new or enhanced habitats to be part of a coherent ecological network. This involves connecting new habitats to existing green infrastructure, wildlife corridors, or natural habitats to ensure they contribute meaningfully to local biodiversity and resilience.

(Barrow: DS2, N3; Eden: DEV5, ENV1; South Lakeland: CS1.1, DM1, CS8.4, DM4; National Biodiversity Net Gain Policy 2023 onwards)

- **3.7** The government's national BNG requirements and guidance are in this <u>online</u> collection of documents.
- **3.8** Westmorland and Furness Council has also published <u>this guidance for delivering the national BNG requirements</u>.
- **3.9** BNG proposals should maximise the potential of a site in terms of providing benefits to as wide a range of habitats and species as possible. Support will also be given to proposals that incorporate innovative habitat creation and enhancement schemes that prioritise locally distinctive habitats and are implemented using native species of local provenance.

Bird boxes have been fitted to this house in Kirkoswald in a way that works with the architecture of the house, making use of the overhanging eaves.

A 'bug hotel' in a garden provides a habitat for insects that support both plant life and birdlife. Kendal.

Biodiversity and BNG: what we don't want to see

- Development that destroys, harms, undermines or places additional risks on priority habitats, priority species, important habitats, or the local ecological network identified in the LNRS.
- Development that misses opportunities to extend or improve habitats or improve connectivity between habitats.
- Development that does not achieve biodiversity net gain in line with national requirements and local policy.
- BNG having a narrow focus on the habitats and species that will benefit.
- Development within habitat buffer distances or otherwise being too close to sensitive sites and/or habitats and species.
- Habitat enhancement and/or creation that is inappropriate to the landscape, flora or soils of its proposed location or that will not achieve its target due to other limiting factors such as the size of the proposed habitat parcel.

Trees, Hedgerows and Planting

Existing Trees, Woodlands & Hedgerows

CODE RRD 3.3 Existing Trees, Woodlands, and Hedgerows: Development proposals must:

- a) retain and protect existing trees and hedgerows and, where removal is unavoidable, compensatory planting and replacement of trees should be provided at an appropriate ratio; and
- b) include a variety of native species in new planting to enhance biodiversity and contribute to the overall green infrastructure network.

(Barrow: DS5, H5, N4, *DS6, GI6*; Eden: DEV5, ENV4, *ENV2*; South Lakeland: AS02, CS1.1, *AS04, AS08, CS8.1, CS8.2, DM4*)

3.10 Developers should integrate planting design to enhance built environments and support ecological functions where appropriate:

- Prioritise the use of native species for plantings to benefit local ecosystems and ensure compatibility with local conditions.
- Design tree pits to support healthy tree growth and prevent infrastructure conflicts.
- Incorporate pollinator-friendly plants and wildflower areas to boost biodiversity and create attractive green spaces.
- Ensure that all planting schemes are well-maintained and harmoniously integrated into the built fabric.
- Retain and protect existing trees and hedgerows where possible and provide compensatory planting as needed.
- **3.11** Existing countryside hedgerows should be retained through the careful design of new housing, so the hedgerows continue to benefit from protection under the Hedgerow Regulations 1997. Section 106 agreements may be attached to planning permissions to ensure hedgerows are retained.

This greenspace adjacent to the River Kent is part of the floodplain and is retained to flood. It also has nature and amenity benefits.

Planting Design

3.12 When designing planting schemes, include pollinator-friendly species and wildflowers to enhance local biodiversity and create attractive, nature-rich spaces. Planting should consider climate change projections to ensure that schemes are resilient and deliver their intended benefits long-term.

- Pollinator-Friendly Species: Incorporate plants that support pollinators and provide diverse habitats.
- Wildflower Areas: Designate areas for wildflowers to enhance local biodiversity and create attractive, nature-rich spaces.
- Consider the scope for planting on balconies, terraces and as green walls or other locations where flats are proposed.

This low-level planting provides different species and habitats to the woodland in the background. Visually however, the leafy planting extends the setting into the site and therefore integrates the development with its context. Greystoke.

Gardens planted with a variety of plants rather than being turfed offer greater amenity, food for pollinators, and makes the changes in level along the street more attractive. Kirkby Lonsdale.

The tree on the left side of the street is on its way to becoming a landmark and focal point in this estate in Lazonby. It is nearly as tall as the houses and softens the street scene.

Trees, Hedgerows and Planting: what we don't want to see

- The loss of existing trees, hedgerows and planting that are important as habitats or as important landscape or townscape features.
- Design that destroys or degrades rather than maintains or enhances important trees, hedgerows or vegetation.
- A tokenistic approach to trees and hedgerows and planting (e.g. retaining a single tree or section of hedgerow without linking them to new planting and other existing features as part of a holistic design).
- New trees, hedgerows and planting that do not adequately compensate for existing trees, hedgerows and vegetation that will be lost due to the development.
- The use of invasive non-native plant species as identified in government guidance: https://www.gov.uk/guidance/invasive-non-native-alien-plant-species-rules-in-england-and-wales.
- New planting that is of low or lesser habitat value.
- New planting that is not resilient to the current and anticipated impacts of climate change.
- New planting that is not an integral part of SuDS.
- New planting where there is insufficient space for trees and hedges to grow to maturity.
- Quantity over quality: for example, fewer trees that are able to mature and offer meaningful habitats and townscape markers will be preferable to many trees of limited habitat or townscape value.
- Expanses of lawn or artificial grass over landscaping and planting that can offer greater SuDS capacity, climate change resilience and habitats.
- New planting that is impractical to maintain.

4. Movement

Lighting & Safety

CODE RRD 4.1 Light Pollution: Lighting in streets, the public realm and buildings must preserve dark skies and minimise or avoid light pollution.

(Barrow: DS5, H5, H7, C7, DS2, HC5; Eden: DEV5, ENV3, ENV9; South Lakeland: AS01, AS02, DM7, DM2; Good Lighting Technical Advice Note)

- **4.1** According to the CPRE Night Blight 2026, Westmorland & Furness has very high coverage of the darkest skies in the UK. Lighting designs should respect Dark Sky guidelines to minimise light pollution. A range of lighting options, including minimal lighting and ground-focused downlighting, can provide security and add visual appeal while being environmentally friendly by minimising light spill and reducing light pollution.
- **4.2** Compliance with both local and national regulations is essential, as is consideration of the Dark Skies initiative to reduce light pollution. Proposals should be informed by the useful best practice advice and detailed technical guidance within the Good Lighting Technical Advice Note: Designing Out Light Pollution in Cumbria, the Yorkshire Dales National Park and the Arnside and Silverdale AONB

Lighting: what we don't want to see

- Light directed upwards.
- Light pollution that is either a nuisance to others or undermines the district's dark skies.
- Light pollution that impacts protected species, especially where bat roosts are present on or in the vicinity of the site.

Car Parking

- **4.3** Most households own at least one car and therefore thought must be given to how and where cars are parked. Consideration must also be given to the needs of people with disabilities, visitor parking, and Electric Vehicle (EV) charging.
- **4.4** Chapter J of the Development Design Guide is a key reference, as this sets out important guidance and technical requirements for the design of new car parking in new residential developments. Appendix 1 of the same guide is also a key reference that sets out the numbers of parking spaces required for new homes and other building and land uses.
- **4.5** This section of the design code therefore concerns **how** car parking is to be designed into places and meets the needs of different people.

CODE RRD 4.2 Car Parking: Car parking provision must align with the <u>Development Design Guide</u> and successfully integrate car parking provision into the design of attractive, distinctive and well-functioning places.

(Barrow: DS5, H7, I6, *BP2, HC4*; Eden: DEV5; South Lakeland: CS1.1, CS10.2, DM1, *CS8.10, DM9*)

4.6 Considerations during the design process for parking:

- Consider the minimum requirements established by Chapter J and <u>Appendix 1</u>
 of the <u>Development Design Guide</u> for car parking in housing developments.
- Promote clear lines of vision along streets and from the front windows of houses by placing parking spaces to the side or rear of houses and having meaningful gaps between areas of on-street parking or parking in front of buildings. Spaces directly in front of windows and doors should be avoided.
- Consider the views out of homes, especially given van and motorhome ownership is increasingly common. Windows should not be obstructed by parked vehicles, nor should the outlooks of principal rooms be expanses of parking.
- Avoid the use of continuous front curtilage parking. Where front curtilage
 parking is necessary, include meaningful landscaping or front gardens to
 mitigate the visual impact of parked cars on the street scene.
- Consider the width of parking spaces: is there sufficient space for vehicle doors to fully open? Is there room for small children, the elderly or disabled to be assisted getting into and out of vehicles? Consider the use of 'informal' spaces for parking cars rather than having formal driveways or marked out parking spaces. These work well in most contexts because they look less like empty parking spaces when empty.
- Ensure that any new or replacement garage, whether integrated or detached, is not in front of the front elevation of the new home, to prevent the garage garages from dominating the plot's street frontage.
- Ensure the design and siting of garages and car ports reinforces the built form and character of a place rather than diluting it. This means either siting them in inconspicuous locations from the street or landscape or designed and sited in a way that they reinforce or complement that footprint, massing and character of the new house.
- Implement effective physical barriers along the kerb, such as planting beds, Sustainable Drainage Systems (SuDS) features, bollards, or street trees, to prevent parking on pavements.

Although this building in Millhouse is a village hall rather than a home, the approach to car parking would work equally well for a rural dwelling in a village. The simple change of materials to create an informal 'apron' of hardstanding for parking, sitting out, potted plants etc. The effect is less domestic in character than a driveway, is low-key in appearance, and allows maximum flexibility of the available space. Permeable surfaces should be used.

A shared drive that places cars behind the building line and gardens upholds the village character of Great Salkeld.

- **4.7** Electric vehicle charging points should be suitably designed into schemes.
- **4.8** The Council's <u>Electric Vehicle Strategy</u> sets out the strategy and practical steps for increasing the provision of EV charging in the district. EV charging provision should be:

- Convenient for the occupiers of dwellings to use and for servicing and replacement.
- Discretely located rather than be an afterthought that clutters elevations, especially given they are a source of light pollution.
- Provided for allocated spaces that are not in the curtilage of the home in a manner that does not clutter the street and avoids the running of cables over pavements and carriageways.

Car Parking: what we don't want to see

- Streets and dwelling plots that are dominated by parked cars.
- Views from principal rooms and homes that are dominated by parked cars
- Windows obscured by parked cars, vans or motorhomes within the curtilage.
- Parking spaces that are too small to properly function by having insufficient space for car vehicle doors to be fully swung open, or for the very young, elderly or disabled to be helped into and out of vehicles.
- Pavement parking and antisocial parking.
- Garages that dominate the front elevations of homes.
- Landscaping and trees that are relegated to the margins of parking spaces.
- EV points that clutter building elevations.
- EV charger cables that cross pavements or streets.

5. Built Form

Introduction

- **5.1** Built Form describes the relationship or pattern of buildings and open spaces in settlements. The <u>National Design Guide</u> defines Built Form as the "three-dimensional pattern or arrangement of development blocks, streets, buildings and open spaces. It is the interrelationship between all these elements that creates an attractive place to live, work and visit, rather than their individual characteristics. Together they provide the framework for the character and sense of place of the built environment."
- **5.2** An area's built form therefore concerns elements such as the urban grain, buildings' shape and massing, scale, density, building line, height and other ways in which the layout and shape of the built environment can influence a place's character.

Building Types and Forms

CODE RRD 5.1 Urban Grain: Applicants must identify the urban grain of the area surrounding their site as a key part in understanding the surrounding context and ensure the design of new development makes a positive response to 'knit into' the urban grain of the surroundings or settlement by respecting its character.

(Barrow: DS5, H5, H7; Eden: DEV5, ENV3, LS1, *ENV2*; South Lakeland: AS01, AS08, CS1.1, DM1, *DM2*)

- 5.3 The **urban grain** is the pattern, arrangement and scale of buildings, streets and plots within a place or area. Understanding the urban grain is essential for ensuring that new development knits into the surrounding environment, respecting the established rhythm, scale, and density of the area. This assessment should inform the design approach, guiding decisions on building types and forms to create a cohesive and contextually appropriate development.
- **5.4** Additional guidance for identifying building types and forms can be found in the <u>National Design Guide</u>. Homes England's <u>Building for a Healthy Life</u> provides guidance on how to apply best practice when designing various urban grains.

Building Line

CODE RRD 5.2 Building Line: Informed by site context assessments, new development must respond positively to the uniformity or variance of the building line that they form part of. New development must reinforce the degree to which plot widths are occupied by buildings in the surrounding context.

(Barrow: DS5, H5, H7; Eden: DEV5, LS1; South Lakeland: AS01, AS08, CS1.1, DM1, CS8.10, DM2)

- 5.5 The building line is the space or setback between the buildings and the street. It contributes to the character of the area by making spaces feel 'open' due to the building lines on both sides of a street being set back some distance from the street. Building lines can make streets feel enclosed by building lines following or being very close to the street edge.
- **5.6** The urban grain should be assessed to determine appropriate building lines that enhance the character, appearance and functionality of the streetscape. Building lines should complement and enhance the existing built-up area, reinforcing the area's sense of place.
 - The building line should respond to the surrounding context and the character of the street.
 - Uniform setbacks should be avoided and variety sought on larger sites
 - Set back distances not dictated by parking dimensions or other standard requirements alone
 - A varied setback can create a more dynamic street space that better responds
 to the context. Variations in the building line can break up the monotony of the
 streetscape and create a more engaging and visually interesting built
 environment. For example, by staggering building fronts, incorporating
 recessed or projecting elements and varying setback depths can help to
 create a diverse streetscape.
 - These variations should be utilised to frame or reveal important landscape views, adding layers of visual interest and creating dynamic street spaces that connect residents and visitors to the surrounding environment.
 - Varied building setbacks can be used to strategically manage the enclosure of street spaces, enhancing the pedestrian experience and the overall public realm. By mixing open and enclosed areas along the street can create a richer and more engaging pedestrian environment.
 - While flexibility in setbacks can be advantageous on larger sites, on smaller sites, uniform setbacks can contribute to a sense of place, making the environment more welcoming and visually coherent.
- **5.7** Building lines should be coordinated with the hierarchy of spaces in a development, and landscaping elements to create a balanced and appealing streetscape that integrates the built environment with natural features. Building lines should align with trees, hedges, public spaces and views out of the development or townscape to soften the street scene and create a human-scale and pedestrian-friendly streetscape. Deviations from the common building line and level of enclosure may be worthwhile where key features of the built or natural environment can be amplified, protected or their amenity enhanced, for example:
 - Where a tree interrupts the existing building line;
 - Where a new public space can be created;
 - Where emphasis of marker buildings is desired at key intersections and gateways;

- Where the setting of a listed or locally important building should be preserved;
 or
- Where a key view is to be framed and celebrated.

This row of houses in Motherby has a clear building line. The roof ridges, eaves, and elevations all form a straight line from left to right.

A regular building line of semi-detached houses in Newbiggin. The building line is echoed by the line of the hedges and walls, the verges, pavement and kerb line.

Buildings here in Burton-in Kendal are possibly oriented for sunlight rather than to face the street, so the building line is a jagged sawtooth-like line with a splayed space between each building and the carriageway.

Height

CODE RRD 5.3 Building Height: The height of rural replacement dwellings must be informed by the context assessment and any historic environment assessment which will identify prevailing building height(s) and the variety of building heights in the site's context.

(Barrow: DS5, H5, H7; Eden: DEV5, LS1; South Lakeland: AS01, AS08, CS1.1, DM1, *DM2*, *DM3*)

- **5.8** Building heights must be informed by an assessment of the surrounding area, ensuring that new developments reflect the existing variety of heights to better integrate with their surroundings and contribute to the overall character and appeal of the area.
- **5.9** Uniform heights can result in monotonous developments, particularly in an area with landscapes and places as diverse as Westmorland and Furness. The building height should be adapted to site-specific conditions to encourage variety and maintain the character of the area.
 - Variations in both eaves heights and overall building heights will help break up the uniformity of the streetscape, contributing to a richer sense of place.
 Staggered rooflines can be introduced to create visual interest and diversity.
 - Building heights should respond to the natural topography of the site. On sloped or uneven terrain, buildings should be designed with stepped or

- Varied building heights can provide distinct landscape or townscape advantages, such as enhancing the visual impact of a settlement edge or creating a more diverse waterside frontage.
- In some instances, lower building height or varied building heights will be sought where this maintains views out from the site to the surrounding landscape or seascape.

CODE RRD 5.4 Housing Suitability: In rural areas, or sites outside of settlement boundaries (and/or in Eden's <u>Smaller Villages and Hamlets</u>) housing should be of a scale and style appropriate to its immediate surroundings and the function of the settlement or area.

In Eden, the resultant dwellings must not contain more than 150m² gross internal floorspace.

(Barrow: DS5, H9; Eden: DEV5, HS2, LS1; South Lakeland: CS6.6)

Contextually tailoring density:

- Preserve the local character: densities should reflect the surrounding built environment, natural features and topography to maintain the distinctive character of the area.
- Enhance the identity of a community: densities should strengthen the sense of place, making new developments resonate with the local history, culture and visual aesthetics.
- Promote design diversity: a standardised approach to densities should be avoided to encourage spatial and architectural diversity and more characterful places.

Built Form: what we don't want to see

- Over development of the site, where the replacement home is of a size, height, footprint or massing that dominates neighbouring or nearby dwelling, harms the landscape character and/or detracts from the rural character of the site.
- An approach to built form, grain, scale, building height, density, set back distances, building lines and the spacing of buildings that is not informed by the site and context assessments.
- Development that repeats or extends poor or inappropriate aspects of the existing context's component of built form.
- Built form that dilutes rather than reinforces the local character

Accessibility

CODE RRD 5.5 Accessibility: Applicants must show how proposed new homes comply with the optional Building Regulation (BR) requirement M4(2) in the proportion required by the relevant legacy local plan.

South Lakeland: all new housing must comply with BR M4(2) and in some cases M4(3) (Accessible and adaptable dwellings).

Eden: 20% of new housing on sites of 10 or more new homes must comply with BR M4(2).

Barrow: all new housing must achieve BR M4(1).

(Barrow: DS5, H5, *BP2, HC4, H12*; Eden: DEV5, LS1, HS5; South Lakeland: DM11, *DM2*)

- **5.10** New homes must be accessible, both within the home and in public spaces, communal areas and pedestrian routes, ensuring that the entire environment is inclusive and navigable for all.
 - New homes should be designed to accommodate the needs of all residents and visitors, particularly the elderly and those with disabilities.
 - Homes should be future-proof and therefore designed with adaptability in mind. Flexibility in design will allow for seamless transitions as residents' needs change, reducing the need for costly renovations or relocations and supporting independent living.

Light, Aspect, Privacy

- **5.11** The home environment plays a pivotal role in shaping the health and wellbeing of individuals and communities. A well-designed home not only provides shelter but also supports the physical, mental and emotional health of its occupants. It also supports residents to live sustainably and avoid using unnecessary energy to provide heating and cooling.
- **5.12** Ensuring that homes are designed with health and wellbeing in mind is crucial for creating environments where residents can thrive. New development can improve or hinder the character of surrounding spaces and their lighting and ambience. New development must incorporate in to designs a consideration of others around it and ensure that excessive lighting of the surroundings is avoided.
- **5.13** This approach is key to building resilient and vibrant communities where people can lead healthy, fulfilling lives.
- **5.14** Applicants should demonstrate what measures have been taken to enhance the health and wellbeing of residents in new developments.
 - New dwellings should be oriented and designed to maximise opportunities for natural light and ventilation to enhance the quality of life for residents.

- Strategically placed windows and well-considered room layouts will help to ensure that spaces receive ample daylight.
- The design of dwellings should favour dual aspect layouts which allow for better light distribution and cross-ventilation. This approach enhances the living conditions and comfort within the home and avoids the need for artificial climate control systems. Single aspect, north facing dwellings should be avoided because of their poor natural lighting and limited sunlight exposure.
- The internal layout of homes should minimise noise transmission between rooms, with bedrooms and private living areas placed away from noise sources like roads or communal spaces.
- New developments must be carefully designed to ensure they do not negatively impact neighbouring properties. Maintaining adequate separation distances between buildings is essential for preserving privacy and avoiding overshadowing. These distances should be determined by the local context to ensure that new developments integrate seamlessly with their surroundings, and they should follow the Building Research Establishment (BRE)'s <u>Site</u> <u>layout for daylight and sunlight guidance</u> to provide a high-quality living environment.
- Thoughtful design strategies should be employed to mitigate adverse impacts on daylight, views and privacy to reduce overlooking of private amenity space and enhance the overall living environment. For example, consider using staggered building lines, screening elements and taking care over strategic window placement.
- In new buildings, energy-efficient glazing should be used to maximise light penetration while maintaining thermal efficiency and reducing the need for artificial lighting.

Security

CODE RRD 5.6 Security and Safety: Applicants must ensure that public and communal spaces, buildings, streets and paths are directly overlooked through natural surveillance and ensure there is clear and obvious demarcation between public and private spaces utilising appropriate physical boundary treatments or landscaping elements. Buildings should directly address streets and routes by avoiding presentation of blank frontages or gables.

(Barrow: DS5, I4, *DS2, HC5*; Eden: DEV5; South Lakeland: CS10.2, DM1, DM5, *DM2*)

5.15 Design must ensure that people feel safe both inside their homes and in the surrounding areas, and consider how the home interacts with its neighbours through a strategic layout, effective boundary treatments, natural surveillance and well-planned parking to create a secure and welcoming environment. Developments should also be designed to promote social interaction among residents as this can

lead to a stronger sense of community and foster wellbeing and security. More guidance can be found in the national 'Secured by Design' guides.

- The design of buildings should enable passive surveillance from the front of the plot and the street. This means windows and main entrances should face public areas to enable residents to overlook their surroundings.
- Trees, shrubs and other planting should be selected and maintained to ensure they do not obstruct sightlines.
- A clearly defined defensible space or a front garden should be introduced to separate public and private areas. This will not only enhance security but will also encourage community interaction by providing spaces where residents can engage with one another while maintaining a clear boundary between public and private space. Such spaces can be achieved through low boundary walls, landscape features or even a change in pavement types.
- Private gardens or other highly enclosed spaces should be located at the rear.
 Fences can be used to maintain a sense of privacy, and they should be constructed using robust materials.
- Secure car and bike parking should be provided in locations that are visible from within the home.

Accessibility, Light, Aspect, Privacy and Security: what we don't want to see

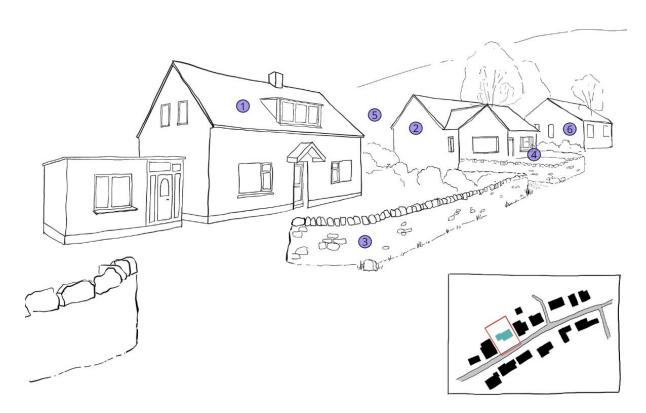
- Private gardens that are overlooked by buildings or public spaces and gardens that border public spaces.
- Buildings that turn their backs on streets, spaces and routes.
- Concealed entrances to buildings.
- Homes that are not oriented and laid out to achieve the benefits of passive solar gain and natural ventilation.
- Homes that are not designed with adaptability or extension in mind.

6. Identity

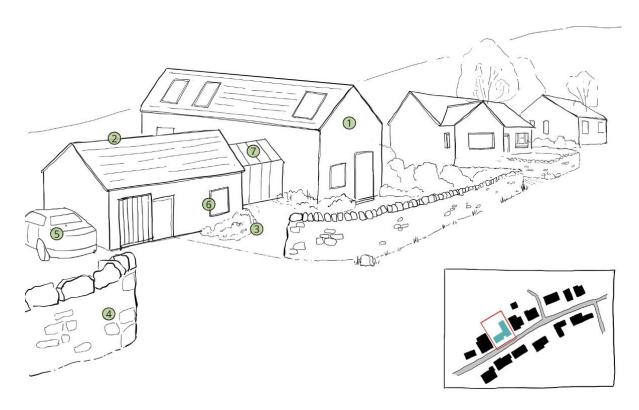
Building type, form and detailing

CODE RRD 6.1 Contextual Design: Applicants must demonstrate how the analysis of the site and its context have informed the design of the proposal. Design must be locally distinctive and rooted in place.

'Design' here is all-encompassing and includes street and building layout, the hierarchy of spaces and buildings, landscape and townscape response, building form, building design and materials.


(Barrow: DS5, H5, H7; Eden: DEV5, ENV2, ENV3, HS2; South Lakeland: AS01, AS02, AS08, CS1.1, DM1, CS8.10, DM2)

- 6.1 The analysis of the site and its context set out earlier in this code are especially important for rural replacement dwellings. A balance must be struck between providing the accommodation required and maintaining the character and local distinctiveness of the site, settlement and/or landscape. The locations and sizes of openings, the roof, the built form, materials, landscaping, and boundary features can all compromise what makes rural Westmorland and Furness special and characterful.
- 6.2 In areas of disjointed, limited or weak character and identity, there may be scope for establishing a new and contemporary identity for the development.


This replacement house at Cliburn has a compact, rural form which sits low in the landscape by using the roof for living space, and has a subservient outbuilding. The roofs are natural slate, and the walls of the house incorporate local red sandstone, while the cladding references rural barns. Solar panels, rooflights, external lighting and satellite dish are accommodated without cluttering the building. The existing stone wall is retained, and new boundary fences are rural in character.

How a rural replacement dwelling can maintain the character of the site and context, first by undertaking an analysis of the context and building:

- 1. An example of a dwelling to be replaced this building is old, but not of any heritage value, it sits on a relatively large plot within a run of houses in a linear settlement.
- 2. Adjacent houses are single storey, a low roofline
- 3. Drystone boundary walls of traditional construction are a common feature within this village
- 4. Adjacent houses are slightly set back from the road, and have front gardens
- 5. The houses are well-spaced, providing views out to the surrounding landscape
- 6. Buildings are primarily simple shapes, without ornate architectural detailing

How design choices can reflect and respond positively to the site and its context

- 1. The house has more floorspace and is oriented to the view behind the house. However, is mass is broken up into two masses, joined by a link rather than it being one bulky built form.
- 2. The roofline sits low within the landscape and is within 0.5 storeys of the neighbouring buildings.
- 3. The building frontage addresses the street in a similar way to adjacent houses.
- 4. Locally distinctive features, such as the stone boundary wall, are refurbished and retained.
- 5. Car parking does not dominate the frontage.
- 6. Architectural detailing, including solid-to-void ratio (see Section 6.9), window openings and doorways, is in-keeping with that of the surrounding area.
- 7. Contemporary materials may be used, in a way which reflects the local vernacular. For example, the link could be glazed or clad in modern materials while the two larger masses use local roughcast render and/or stone.

The simple gabled forms, height, massing, slit-like openings and slate roofs of this replacement dwelling outside Penrith all recall farm buildings in the area. The oversailing roofs are a traditional response to the climate of the district. The dark recessive colour of the painted timber cladding has a similar colour to a weathered stone barn. The verge between the house and lane has been kept simple and unaltered. This reinforces the rural character of the building and site.

The landscaping and siting of this replacement dwelling responds to the topography. The open rural boundary helps retain a strong link to the rural landscape. It is also clear that most of the glazing is on the side of the house facing the landscape. This allows the other elevations to be as simple and solid as possible, which echoes the characteristics of barns and farm buildings.

Spatial Character in Historic Places

CODE RRD 6.2 Historic Spatial Character: Development proposals should respond to the historic spatial character of the site to achieve a layout that reflects the special character of the area. This should include considering the level of enclosure within the streetscape, the variety in size, massing and use in historic spaces and the treatment of pavements and landscaping. Whilst there is a need to meet modern transport and accommodation needs, developments should not significantly alter the historic spatial character of a settlement to meet these needs.

(Barrow: DS4, DS5, HE4, H5, *BP4*; Eden: DEV5, ENV10; South Lakeland: AS07, DM1, DM3, *AS08*, *CS8.6*, *CS8.10*)

- 6.3 Many of the district's characterful and historic places developed in the era before reliance on cars and motor vehicles. Therefore, the impact of the movement and parking of cars in new developments should be considered in relation to the historic context and setting. Successful new housing schemes are often not dominated by vehicles, and driveways and garages can be discrete to housing. The more that parking spaces are integrated as informal components of the design of streets, the more chance there is for design to have a similar spatial character and sense of enclosure and variety of spaces as historic places do. This may be supported by the move to electric powered vehicles, where cars can be parked and charged at discreet charging stations away from the front of houses. In addition, how hard and soft landscaping are handled verges, hedges, paving, kerbs, pavements can play a significant part in maintaining a local and/or rural identity in a new development.
- 6.4 In some cases, the curtilages of rural dwellings open out onto fields and large spaces. The usual approach of having a front garden, driveway, garage and highly enclosed rear garden can be at odds with the traditional character and specialness of the rural landscape. In some cases, gardens should be designed to maintain the visual link between the landscape and barn, or to have discrete, informal parking or a yard for parking rather than a standard driveway. Similarly, planting and the type and layout of hard spaces is important to overall character.
- **6.5** Boundaries should also be given close attention. High and low fences, bollards, formal gateways tall hedges and even domestic style boundary walls can detract from the rural character by breaking up important spaces and introducing strongly domestic and suburban features to the site.

Elevation composition and articulation

6.6 The design of building elevations is vital to the character, identity and overall appearance of buildings. It should respect and reflect the established local character or, where appropriate, establish a coherent new identity that complements and harmonises with the surrounding context.

- The design of building elevations should avoid flat, monotonous facades by
 incorporating elements that add depth, interest and a human scale to the
 streetscape. This can be achieved through the strategic use of projections and
 recesses, which create shadows and a more dynamic appearance. Such
 elements can be door entrances or deep reveals to windows, and they should
 come from a thorough understanding of the local identity.
- The orientation of the main façade should be optimised to enhance environmental performance through daylighting and ventilation, and to respond to the topography of the site and the landscape views. In Westmorland and Furness, south-facing elevations are ideal for capturing sunlight, especially for primary living spaces, reducing the need for artificial lighting and heating during colder months.

A range of projecting and recessed features – both large and small – add interest and character to these new houses in Lindal-in-Furness

The way buildings relate to the street

- 6.7 The relationship between buildings and the street is a crucial aspect of design that significantly impacts the character, safety and appearance of neighbourhoods. The design of street frontages and boundary treatments should contribute to a cohesive streetscape that reflects local character, enhances the public realm and fosters a sense of community.
 - Street frontages should be designed to achieve a harmonious and visually appealing streetscape. Within existing streetscapes, such as at site edges, the design should be consistent with the established approach in the area. New development should establish a consistent design language, using common architectural elements and relating to the local identity.

- The relationship between buildings and the street must be defined by appropriate setbacks and building lines that contribute to a cohesive and wellstructured streetscape. These setbacks should not be simply determined by vehicular access or parking spaces, but by a thorough consideration of the whole streetscape.
- Where buildings face the street, the placement and design of doors should encourage interaction with the street and contribute to a lively, pedestrianfriendly environment.
- Boundary treatments must reflect the local character and contribute positively
 to the street, using materials and designs that enhance the public realm. The
 height of these elements should balance privacy with natural surveillance, with
 front boundaries generally being lower to maintain a connection between the
 home and the street. Integrating landscaping elements can soften the
 transition between public and private spaces and add to the green character
 of the area.

A house facing directly onto the street and having a positive presence in the street scene. Armathwaite.

Roof

- **6.8** The roof design has a significant impact on how a building integrates with its surroundings. Roofs play a crucial role in defining the character and identity of places. In some of the district's settlements and landscapes, the views over the rooftops and roofscape can be important aspects of their character and distinctiveness.
 - The detailing of the roof should reflect the traditional and vernacular styles characteristic of Westmorland and Furness, including the use of appropriate and durable materials, detailing and, in some cases, decoration.
 - Roof pitches in new development should respond positively to the local context to ensure that they harmonise with the surrounding townscape and

aligns with traditional buildings and is appropriate in most circumstances. Additionally, roof pitches should not be lower than 27°, as shallower roofs are uncommon in districts with slate or stone slate roofs and are unlikely to contribute positively to local character.

- Roof pitch and orientation should be designed to facilitate the integration of solar panels. The placement and integration of solar panels should be seamless and should complement the building's aesthetics and not disrupt the architectural harmony or the visual appeal of the surrounding landscape.
- Chimneys are a significant feature in the traditional architecture of
 Westmorland and Furness, contributing to the area's distinct character. They
 are important elements that add interest to the roofscape and skyline. When
 included in new buildings, chimneys should be proportionate to the building's
 size and style, and respectful of the local character.
- Rather than simply provide a vertical accent to the roofscape, a chimney could serve a 'modern' purpose, such as providing ventilation to the house, concealing the flues of wood burners, or be locations for bird or bat boxes.

Slate roofs of different pitches and heights give this house a vernacular character, and a sense of being adapted and added to over time by simply building on to the existing structure. Low Hesket.

Millhouse borders the Lake District, and this is evident in the Cumbrian blue slate roof with distinctive stone slate lower course and the smaller openings and extra-solid looking walls. These minor variations within the materials and design of buildings across the district must not be lost through the use of generic details or standard materials and details.

Windows and doors

- **6.9** Windows are sometimes referred to as 'the eyes of a building'. They should contribute positively to the character of buildings in Westmorland and Furness by respecting traditional design and proportions and, at the same time, meeting contemporary needs for light, ventilation and energy efficiency.
 - The proportions and placement of windows should respect the character of the area. Traditionally, windows have a vertical emphasis, with height greater than width. New developments should reflect this proportion, particularly in areas with a strong historical character.
 - The overall ratio of 'solid-to-void', or wall-to-openings, is an important characteristic of buildings. Few openings and/or small openings can give an elevation a very 'solid' appearance due to the amount of blank wall, while many large openings can give an elevation an 'open' appearance because it is dominated by 'voids'. It is important to consider the balance of solid-to-void across and elevation and how consistent it is. Consideration should also be given to each elevation. For example, gables rarely have many or any openings, while southerly facing elevations may have more and larger openings to capture more daylight.
 - Modern windows should include double or triple glazing to improve thermal performance while ensuring the frames and proportions are consistent with the traditional character of the area.

- The orientation and design of windows, doors and other openings should allow an adequate amount of natural light into the building while avoiding excessive solar gain to prevent overheating in warmer months (see code on orientation for solar gain in the Resources section).
- The use of features such as deep window reveals or overhangs can reduce unwanted solar heat gain in warmer months while still allowing natural light and passive solar heating in colder months. They are also effective for reducing rain entering into walls, windows, doors and footings.
- The use of internal or external blinds or sunbreaks, and blinds to roof windows
 can prevent light spill at night but also manage the heating and lighting of
 rooms by solar gain. External shading is far more effective at controlling
 internal room temperatures than internal blinds.
- Walling materials have a big influence over the number, sizes and layout of windows. For example, slatestone and rubble (whether limestone or sandstone) is a difficult material to build with, especially for angles, edges and corners, and spanning openings. As a result, walls made of these materials often have fewer openings or use smaller openings due to the nature of the walling material. This gives these types of building a distinctive character.
- New windows should take into consideration the need for ventilation.
 Openings should be designed to encourage natural ventilation while preventing noise transmission. In some cases, trickle vents can be discreetly integrated into window designs to provide constant air circulation without compromising appearance.

Materials

- 6.10 The identity of Westmorland and Furness is closely tied to the natural materials historically used in its buildings and landscape. These materials, such as local stone and slate, reflect the area's distinctive geology and have been integral to maintaining architectural harmony with the surrounding environment. The choice of materials used in new buildings plays a crucial role in maintaining the district's distinctiveness and fostering a sense of place. Westmorland and Furness was historically and, is still, a place where stone was quarried, and bricks were made from local clay. As a historic producer and exporter of building materials, it should be expected to see these in new development as a response to place. Building stone and slate continue to be quarried in and around Westmorland and Furness. A directory of active UK quarries listed by stone type and indicating which supply building stone is in the MineralsUK Directory of Mines and Quarries 2020.
- **6.11** New development should reflect the local identity and character by prioritising the use of materials that are either locally quarried and produced, or reclaimed. Materials should harmonise with the landscape, reinforce the area's distinctiveness and support sustainability goals by reducing the carbon footprint of transporting materials. The use of locally sourced modern materials also supports the local and circular economy.

A small sample of the wide variety of building stone found across the district. Clockwise from top left: Barrow, Alston, Dufton, Ivegill, Appleby, Ulverston and Kirkby Lonsdale. Walling

- **6.12** New development, particularly where there is an effect on conservation areas or other heritage assets, should use walling materials that are consistent with the historic character of the surroundings.
- **6.13** Walling materials should reflect the local character which, depending on the area, is characterised by the use of stone or bricks. When specifying these materials, applicants must research the local character to identify the type and colour of stone or colour of bricks prevalent in the specific location. In locations with historically rendered buildings, a traditional roughcast render or lime render finished in traditional colours should be used.
- **6.14** The type, colour and texture of stone varies widely across Westmorland and Furness. How stone is shaped, finished, applied and pointed also varies across the area and between different types of buildings at the local level. This is why understanding the site and its content is key to choosing the right stone and pointing. If the local stone is no longer quarried alternatives may be sourcing the same stone from elsewhere, or an alternative material of the same colour.
- **6.15** The texture of roughcast render is an important detail, whether the natural finish is used or the render is painted over. The degree of roughness depends on the sizes of the stones in the render and the amount of paint over it.
- **6.16** Modern cladding materials such as timber or composite panels can be used in contemporary buildings but must harmonise with the surrounding environment.

The six examples above are from different towns and villages in Westmorland and Furness: Ulverston, Kirkby Lonsdale, Langwathby, Grange-over-Sands and two examples in Dalton: painted and natural.

Roofing

- **6.17** New development should use roofing materials that respect local character and, when possible, are locally sourced. There are historically two local types of slate, both of which are still actively quarried today: Cumbrian blue/grey slate and Westmorland green slate. These are preferred materials for roofing in the district, given their local source and tradition of use, even in the decades after the arrival of the railway allowed the import of materials from elsewhere in Britain.
- **6.18** Across the district, but especially in conservation areas and historic places, roofing materials should follow the local identity, with an emphasis on using slate or stone typical of the area. Applicants must study the local vernacular to determine the appropriate type of slate or stone for the specific location. These materials should be installed using traditional methods, such as laying in diminishing courses, with larger slates at the eaves and smaller ones near the ridge.
- **6.19** Building materials such as interlocking concrete tiles, plastic, composite or artificial tiles, which are limited to a single size, should be avoided. These materials lack the variation and character found in local buildings.
- **6.20** In contemporary buildings, modern roofing materials like metal sheeting are acceptable if locally sourced and integrated sensitively into the environment. Roofing materials should visually blend with and complement the surrounding landscape.

- **6.21** Flat roofs can work well in modern designs or alongside pitched roofs if paired with appropriate eaves or parapet details, ensuring proper local integration and functionality.
- **6.22** Textures should complement the traditional palette, avoiding overly reflective, smooth, artificial, synthetic or bold surfaces that detract from the natural or built environment.

Landscaping, gates, fences and walls

- **6.23** Boundary treatments must enhance the sense of place by taking cues from the established local character.
- **6.24** A hierarchy of boundary features and types should be used in order to avoid development looking monotonous or to have high close-boarded fences or fence panels in prominent locations. For example:
 - Native hedges or dry stone or coursed stone walls to outer and the more prominent boundaries of developments or houses
 - Low walls or hedges to front gardens and between front gardens
 - Fences or non-native hedges between neighbouring rear gardens
- **6.25** Particularly in rural settings, dry stone walls and hedgerows are the most common types of boundary treatments and must be retained. They integrate seamlessly with the landscape, and they are therefore the preferred option. These traditional boundaries also provide an important contribution to biodiversity.
- **6.26** Dry stone walls should be built using locally sourced stone, with attention to matching the size, placement, and texture of existing boundary walls. For hedgerows, native plant species should be selected to align with the surrounding flora.
- **6.27** Hard landscaping should be minimal and carefully designed to harmonize with the local context, particularly regarding colour and texture, ensuring a cohesive relationship with both the natural and built environment.

Alternative Materials

- **6.28** The use of alternative materials may be considered where they contribute positively to the townscape, enhance the area's distinctiveness or provide clear sustainability benefits without compromising historic character. Such materials could include timber cladding, recycled sheet metals, modern composite materials or ecofriendly alternatives.
- **6.29** In historic places there may be merit in using modern materials alongside traditional material, or in an ancillary manner to traditional materials to ensure visual harmony with the traditional townscape or landscape. In some cases, modern materials may be more appropriate. For example, an informal timber garage / store building can often be more subservient and less suburban-looking than a masonry-built garage and store.

- **6.30** Alternative materials should be locally sourced as this will not only contribute to reducing the environmental impacts of construction, but it will also strengthen the local economy and create a natural progression of the district's identity in a manner that is respectful towards its environment and heritage.
 - Locally sourced materials: Traditional buildings in Westmorland and Furness are shaped by the use of local stone and slate, achieving their character based on the specific geographical area where they were built. In the same way, new development should prioritise the use of locally sourced materials. This will continue the district's tradition of using local resources to define its architectural identity.
 - Sustainable practices: Embracing sustainable materials helps ensure a resilient future for Westmorland and Furness.
 - Alternatives like timber, reclaimed materials or modern eco-friendly options will have a reduced environmental impact.
 - The focus is not solely on the modernity of these materials but rather on their sustainable qualities, such as reducing carbon footprint or increasing energy efficiency.
 - Traditional materials like slate, stone, brick, and timber can last for centuries with proper maintenance, unlike uPVC or aluminium.
 - Avoid materials like concrete, uPVC, and artificial stone due to their high energy consumption, water usage, and environmental impact.
 - Building components that are not easily maintained and have short lifespans foster a 'remove and replace' culture. They only look appealing when new, promoting unsustainable practices in the long term.
 - Complementing the landscape: Alternative materials should be chosen to blend seamlessly with the built environment and the natural landscape and to complement the traditional materials. This ensures that new developments enhance, rather than disrupt, the setting. Colours, textures and finishes should mirror the tones and patterns of the surrounding environment, in line with the historical use of local stone and slate.
 - A Continuation of identity: Rather than creating a completely new identity, the
 use of alternative materials should represent a natural evolution of
 Westmorland and Furness's architectural heritage. These materials should
 serve as a continuation of the district's legacy, respecting the past while
 embracing modern, sustainable innovation.

Three very different buildings achieve harmony through the use of similar local stone and a mix of local and Welsh slate. Langwathby.

Bare stone, natural colour render and painted render side by side, giving a variety of textures along with the variations in the designs of the houses and cottages. Langwathby.

Views into and out of development

CODE RRD 6.3 Views: The design of replacement dwellings must positively respond to existing views, vistas and sightlines or create or enhance important vistas or viewpoints and sightlines.

(Barrow: DS5, H5, H7, N1; Eden: DEV5, ENV2, ENV3; South Lakeland: AS02, CS1.1, DM1, DM3, CS8.2, CS8.10, DM2)

- **6.31** Proposals should detail how existing and new shared viewpoints or vistas have been considered, particularly in relation to the landscape, coast, important historic features or where culturally important. The retention and enhancement of existing important viewpoints, vistas, and sightlines should be clearly demonstrated.
- **6.32** With rural dwellings, there is often an important connection between the house and the land and landscape. Where homes are on settlement edges or are in

the countryside, the impulse to create a traditional fenced-in private garden should be avoided in favour of boundary features that maintain visibility between the home and landscape. Simple post and wire fences can achieve this, as can low hedges, low stone walls, or ditches.

CODE RRD 6.4 Edges and Transitions: Development at settlement edges must ensure a sympathetic transition between built-up areas and the countryside, while avoiding disruption to the local topography and character. Housing form should reflect the local vernacular, including the choice of local materials and the scale of dwellings.

(Barrow: DS5, H5, H7, N1; Eden: DEV5, ENV2, ENV3; South Lakeland: AS01, AS02, AS08, CS1.1, DM1, DM13, CS8.2, CS8.10, DM2)

- **6.33** The type, form and composition of new development must be rooted in local character. This varies across Westmorland and Furness in response to changes in the underlying geology and the historical development of settlements which in turn has influenced not only the choice of local building material but also built forms and methods of construction. Important features such as historic buildings, ecological designations, trees, hedges and landforms and the connections or views between them, contribute to character and should be protected and celebrated in new developments.
- **6.34** A detailed analysis of local characteristics and variations across Westmorland and Furness is available in the accompanying Summary Character Appraisal and Baseline documents. The Context section of the Design code provides further guidance on understanding the site and wider surroundings.
- **6.35** The applicant must demonstrate and clearly articulate how the proposed development respects or enhances local character and distinctiveness. This must be informed by an understanding of the site context, including any historic character assessment required to support the application.

Views out to the countryside enhance the design and character of any housing development. These views provide a crucial link to place and context and add a different dimension to the street scene. Kirkby Lonsdale.

Glimpsed views like this one matter: from the heart of Skelton, there are views across to the other side of the Eden valley. The district is blessed with an interesting and varied landscape.

Even the simplest of building designs takes on a new dimension if there are views that reinforce a rural or village character. Low Hesket.

CODE RRD 6.5 Housing Design: Development proposals should respect the context and prevailing scale of existing traditional buildings. New housing must reflect existing and prevailing local housing types such as cottages, terraces and detached houses.

(Barrow: DS5, H5, H7; Eden: DEV5, *HS4;* South Lakeland: AS01, AS08, CS1.1, DM1, *AS02, CS8.10, DM2*)

6.36 Development should respond to and complement existing patterns of settlement type and layout. In most cases these elements have developed over centuries and are an important part of the historic character of a place. The reasons for any deviation away from the existing historic pattern should be explained, together with active measures towards good placemaking.

CODE RRD 6.6 Historic Design: Where development impacts a conservation area or the historic core of a settlement, design must reflect the local vernacular tradition (where buildings were designed to meet functional needs) or otherwise show a clear response to local context. There are many variations according to location and the applicant must demonstrate that their designs respond appropriately to the specific traditions of the area.

(Barrow: DS4, DS5, HE4, H5, *BP4;* Eden: ENV10, LS1; South Lakeland: AS07, AS08, CS1.1, DM1, DM3, *AS02, CS8.6, CS8.10, DM2*)

- **6.37** Information on common vernacular forms, and their distribution across Westmorland and Furness, can be found in the Summary Character Appraisal and Baseline. Each settlement has a distinct architectural tradition, but there are common characteristics across the district. In areas where there is a wider variety of architectural styles, particularly those areas of 19th and early 20th century expansion around the edges of towns, design cues should still be taken from the prevailing architectural forms of the area.
- **6.38** As a general rule of thumb, the more rural a site is, the greater the influence of vernacular architecture on the design of buildings should be. This is especially so in the height, form, massing and materials of buildings, which help to integrate rural buildings into the landscape.
- **6.39** In built up areas, vernacular buildings are often outnumbered by buildings whose design reflects national or international styles and trends and movements in design. In these cases, vernacular architecture and architecture of its time both have their place, but a reference to the locality in building design can maintain or strengthen an area's character, rather than dilute it.

CODE RRD 6.7 Compatible Building Materials: The colour and textures of new development must harmonise with local character and landscape. Choices of building materials must reflect the quality and character of the built environment and landscape.

(Barrow: DS5, DS6, H5; Eden: DEV5, ENV3, ENV10, *ENV2;* South Lakeland: AS07, DM3, *AS08, CS8.6, CS8.10, DM2*)

6.40 One of the most important ways of establishing a sense of place in the rural environment is through the use of materials. Within Westmorland and Furness, the appearance of buildings is largely a direct product of the geology beneath them and locally prevalent building materials. However, in some areas building materials have been imported or manufactured, changing the appearance and character of buildings. Development should respond to and complement existing local character and the surrounding landscape. Where possible, original fabric should be retained or reused, and new materials and work should complement the historic fabric.

Historically it was common to use pigment or render to give buildings a 'neat' and 'clean' appearance like the building in the middle. As good stone became more common and affordable, local stone was left exposed like the red building on the right. We now commonly see buildings like the one on the left that were once rendered, being exposed. If local stone is less commonly available, texture and colour become increasingly important to new development. Kirkoswald.

The contrasts in colour and texture can be a source of interest and delight. Kirkoswald.

Key points on building identity

6.41 The following text is an overview of the key characteristics of the rural built environment across Westmorland and Furness. More detailed and area specific

information is available in accompanying Summary Character Appraisal and Baseline.

Scale

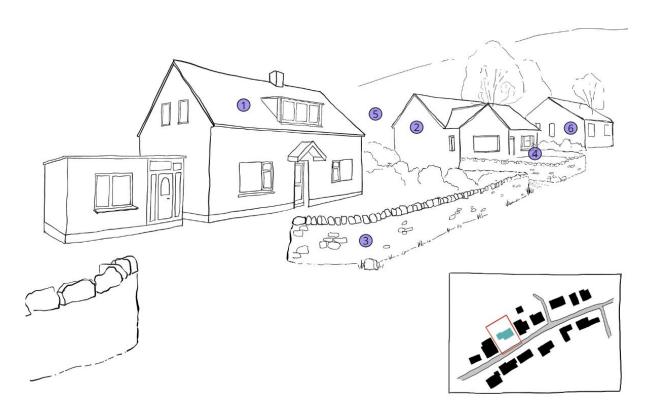
 Buildings traditionally sit low in the landscape. Generally, they are one or two storeys high in a rural setting, with three storeys or more common in the centres of towns.

Form

- Roofs are generally simple in design, with central ridges, and eaves at equal height. The traditional use of slate and stone slate means roofs are rarely shallower than 25°.
- Dormer windows are rare.
- Chimneys are a prominent feature.
- It is common to see additions or outbuildings as smaller 'lean-tos' built against a house or building.

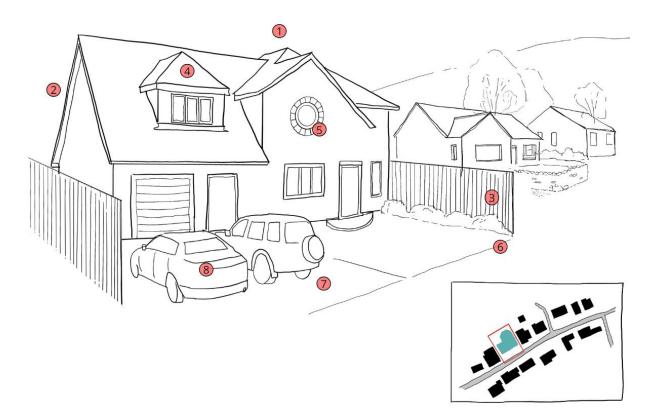
Details

- Window locations are usually dictated by internal layout and the building's original use and are not necessarily symmetrical.
- Older window openings are generally small with deep reveals and stone mullions. The use of sash windows became increasingly common in buildings over the course of the 18th century.
- The need to protect people, interiors and building fabric from wind and rain means roofs traditionally overhang the eaves or have stone tabling over gables, windows and doors are well recessed into the depth of walls, and doorways are often sheltered from prevailing winds. Other features like copingstones and window sills project out from the wall in order to help rainwater run off the building rather than run down it.
- Buildings often have a very 'solid' appearance due to there being a much higher ratio of wall to openings on each elevation regardless of material used. This is especially true in traditional rubble and slatestone buildings: these materials are difficult to build with and need either additional large pieces of stone or timber beams to span openings. Exceptions to this 'solid' appearance are often in structures attached to the main part of a house, such as bow or bay windows, sunrooms or conservatories.
- Openings are typically on the 'long' elevations of buildings, with gables usually lacking any openings.
- Openings are generally noticeably taller than they are wide, giving a vertical proportion to openings. Individual panes of glass usually have a vertical proportion, even those in openings that are wider than they are tall.
- Roof slates are traditionally laid in diminishing courses, with the smallest slates nearest the ridge of the roof, with the slates gradually increasing in size to the lowest part of the roof at the eaves.


Materials

- The colour palette of Westmorland and Furness is relatively varied and largely determined by the use of local building materials. Different types and colours of stone, such as red and pink sandstone or grey limestone, are distinctive to particular areas.
- There is generally a hierarchy of materials, with the best materials and finishes used on the front and prominent elevations of buildings, and lower status materials used on the backs and less prominent parts of buildings, and in less important buildings.
- Stone has historically been quarried across Westmorland and Furness and has been used in the construction of the district's traditional buildings. Timberframing is much less commonly found in Westmorland and Furness than other parts of England due to availability of good and affordable building stone.
- Brick is not a traditional building material in the area, with the exception of Barrow in Furness which was a brickmaking centre, and brick was sometimes used in Eden.
- Cumbrian blue/grey slate and Westmorland green slate have been the main roofing materials used throughout the district in recent centuries, with stone slate (made from limestone or sandstone) used in some areas.
- Rough-cast render or lime wash is typically used to seal rubble-built walls and give rubble walls a smoother appearance. This was traditionally painted cream or grey, but more recently various coloured facades have been used.

Identity: what we don't want to see


- Replacement dwelling designs that ignore the findings of the site, context and heritage assessments.
- Replacement dwelling designs where the building materials, forms, elevations, details and response to topography collectively do not feel rooted in the locality or respond to the place.
- The use of high close boarded fences in prominent locations alongside highways and active travel routes, and along its outer edges, especially where the boundary adjoins the countryside or public open spaces.
- Mock-historic buildings or mock-historic details rather than a modern interpretation of the place.
- Artificial or short lifespan building materials and components.
- The tokenistic use of stone or slate, especially if it is reconstituted or not local in its origin.
- Proposals that attempt to give buildings identity without also designing identity into the streets, spaces and overall design of the development.
- Proposals that do not respond to the climate of Westmorland and Furness such as recessing windows and doors, roof overhangs or projecting eaves, having projecting copings, tabling or windowsills, or achieving a suitable ratio of solid-to-void in elevations.

How a rural replacement dwelling can harm the character of the site and context: the existing site and dwelling

- 1. An example of a dwelling to be replaced this building is old, but not of any heritage value, it sits on a relatively large plot within a run of houses in a linear settlement
- 2. Adjacent houses are single storey, a low roofline
- 3. Drystone boundary walls of traditional construction are a common feature within this village
- 4. Adjacent houses are slightly set back from the road, and have front gardens
- 5. The houses are well-spaced, providing views out to the surrounding landscape
- 6. Buildings are primarily simple shapes, without ornate architectural detailing

How a design choice can mean a rural replacement dwelling harm the character of the site and context

- 1. The replacement has a much larger footprint than the original dwelling and does not reflect the surrounding building heights. The width of the dwelling fills the plot and closes views out form the street to the wider landscape.
- 2. The replacement dwelling is noticeably bulkier, larger and taller than neighbouring houses.
- 3. Traditional features, such as the boundary wall have been lost and replaced with poorer quality boundary features.
- 4. The roof design is overly complicated, and the pitch does not match that of the surrounding buildings.
- 5. The replacement dwelling's features and openings do not reflect local character or vernacular.
- 6. The high fences harm the character and openness of the street
- 7. Modern surfacing of external spaces e.g. block paving replaces soft landscaping. The biodiversity of the site is decreased and runoff increased.
- 8. Car parking dominates the frontage, detracting from the rural character of the street.

